Copied to
clipboard

?

G = C42.310C23order 128 = 27

171st non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.310C23, C4.1302- (1+4), C4.1832+ (1+4), C89D451C2, C86D449C2, C84Q849C2, C4⋊D4.33C4, C22⋊Q8.33C4, C4⋊C8.242C22, (C2×C8).450C23, C422C2.7C4, (C4×C8).349C22, C42.240(C2×C4), (C2×C4).692C24, C4.4D4.26C4, (C4×D4).66C22, C42.C2.26C4, (C4×Q8).63C22, C4⋊M4(2)⋊40C2, C42.6C457C2, C23.49(C22×C4), C8⋊C4.109C22, C22⋊C8.151C22, C2.39(Q8○M4(2)), C22.214(C23×C4), (C22×C8).456C22, (C22×C4).952C23, (C2×C42).799C22, C22.D4.14C4, C42.6C2235C2, C42.7C2232C2, C42⋊C2.94C22, (C2×M4(2)).255C22, C23.36C23.19C2, C2.50(C23.33C23), C4⋊C4.125(C2×C4), (C2×D4).147(C2×C4), C22⋊C4.27(C2×C4), (C2×C4).90(C22×C4), (C2×Q8).130(C2×C4), (C22×C4).370(C2×C4), SmallGroup(128,1727)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.310C23
C1C2C4C2×C4C42C2×C42C23.36C23 — C42.310C23
C1C22 — C42.310C23
C1C2×C4 — C42.310C23
C1C2C2C2×C4 — C42.310C23

Subgroups: 252 in 173 conjugacy classes, 124 normal (40 characteristic)
C1, C2 [×3], C2 [×3], C4 [×2], C4 [×11], C22, C22 [×9], C8 [×8], C2×C4 [×6], C2×C4 [×6], C2×C4 [×8], D4 [×3], Q8, C23, C23 [×2], C42 [×4], C42 [×2], C22⋊C4 [×10], C4⋊C4 [×2], C4⋊C4 [×8], C2×C8 [×8], C2×C8 [×2], M4(2) [×4], C22×C4 [×3], C22×C4 [×2], C2×D4, C2×D4 [×2], C2×Q8, C4×C8 [×2], C8⋊C4 [×4], C22⋊C8 [×6], C4⋊C8 [×2], C4⋊C8 [×8], C2×C42, C42⋊C2 [×2], C4×D4, C4×D4 [×2], C4×Q8, C4⋊D4, C22⋊Q8, C22.D4 [×2], C4.4D4, C42.C2, C422C2 [×2], C22×C8 [×2], C2×M4(2) [×2], C2×M4(2) [×2], C4⋊M4(2), C42.6C22 [×2], C42.6C4, C42.7C22 [×2], C89D4 [×4], C86D4 [×2], C84Q8 [×2], C23.36C23, C42.310C23

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C24, C23×C4, 2+ (1+4), 2- (1+4), C23.33C23, Q8○M4(2) [×2], C42.310C23

Generators and relations
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, ac=ca, dad=a-1, eae=ab2, bc=cb, bd=db, be=eb, dcd=b2c, ece=a2b2c, ede=a2d >

Smallest permutation representation
On 64 points
Generators in S64
(1 39 51 14)(2 40 52 15)(3 33 53 16)(4 34 54 9)(5 35 55 10)(6 36 56 11)(7 37 49 12)(8 38 50 13)(17 45 29 57)(18 46 30 58)(19 47 31 59)(20 48 32 60)(21 41 25 61)(22 42 26 62)(23 43 27 63)(24 44 28 64)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 6)(4 8)(9 38)(10 35)(11 40)(12 37)(13 34)(14 39)(15 36)(16 33)(18 22)(20 24)(26 30)(28 32)(41 61)(42 58)(43 63)(44 60)(45 57)(46 62)(47 59)(48 64)(50 54)(52 56)
(1 47)(2 64)(3 41)(4 58)(5 43)(6 60)(7 45)(8 62)(9 26)(10 19)(11 28)(12 21)(13 30)(14 23)(15 32)(16 17)(18 38)(20 40)(22 34)(24 36)(25 37)(27 39)(29 33)(31 35)(42 50)(44 52)(46 54)(48 56)(49 57)(51 59)(53 61)(55 63)

G:=sub<Sym(64)| (1,39,51,14)(2,40,52,15)(3,33,53,16)(4,34,54,9)(5,35,55,10)(6,36,56,11)(7,37,49,12)(8,38,50,13)(17,45,29,57)(18,46,30,58)(19,47,31,59)(20,48,32,60)(21,41,25,61)(22,42,26,62)(23,43,27,63)(24,44,28,64), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(9,38)(10,35)(11,40)(12,37)(13,34)(14,39)(15,36)(16,33)(18,22)(20,24)(26,30)(28,32)(41,61)(42,58)(43,63)(44,60)(45,57)(46,62)(47,59)(48,64)(50,54)(52,56), (1,47)(2,64)(3,41)(4,58)(5,43)(6,60)(7,45)(8,62)(9,26)(10,19)(11,28)(12,21)(13,30)(14,23)(15,32)(16,17)(18,38)(20,40)(22,34)(24,36)(25,37)(27,39)(29,33)(31,35)(42,50)(44,52)(46,54)(48,56)(49,57)(51,59)(53,61)(55,63)>;

G:=Group( (1,39,51,14)(2,40,52,15)(3,33,53,16)(4,34,54,9)(5,35,55,10)(6,36,56,11)(7,37,49,12)(8,38,50,13)(17,45,29,57)(18,46,30,58)(19,47,31,59)(20,48,32,60)(21,41,25,61)(22,42,26,62)(23,43,27,63)(24,44,28,64), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(9,38)(10,35)(11,40)(12,37)(13,34)(14,39)(15,36)(16,33)(18,22)(20,24)(26,30)(28,32)(41,61)(42,58)(43,63)(44,60)(45,57)(46,62)(47,59)(48,64)(50,54)(52,56), (1,47)(2,64)(3,41)(4,58)(5,43)(6,60)(7,45)(8,62)(9,26)(10,19)(11,28)(12,21)(13,30)(14,23)(15,32)(16,17)(18,38)(20,40)(22,34)(24,36)(25,37)(27,39)(29,33)(31,35)(42,50)(44,52)(46,54)(48,56)(49,57)(51,59)(53,61)(55,63) );

G=PermutationGroup([(1,39,51,14),(2,40,52,15),(3,33,53,16),(4,34,54,9),(5,35,55,10),(6,36,56,11),(7,37,49,12),(8,38,50,13),(17,45,29,57),(18,46,30,58),(19,47,31,59),(20,48,32,60),(21,41,25,61),(22,42,26,62),(23,43,27,63),(24,44,28,64)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,6),(4,8),(9,38),(10,35),(11,40),(12,37),(13,34),(14,39),(15,36),(16,33),(18,22),(20,24),(26,30),(28,32),(41,61),(42,58),(43,63),(44,60),(45,57),(46,62),(47,59),(48,64),(50,54),(52,56)], [(1,47),(2,64),(3,41),(4,58),(5,43),(6,60),(7,45),(8,62),(9,26),(10,19),(11,28),(12,21),(13,30),(14,23),(15,32),(16,17),(18,38),(20,40),(22,34),(24,36),(25,37),(27,39),(29,33),(31,35),(42,50),(44,52),(46,54),(48,56),(49,57),(51,59),(53,61),(55,63)])

Matrix representation G ⊆ GL8(𝔽17)

100150000
00140000
1316040000
100160000
00001000
000041600
00001810
0000150016
,
130000000
013000000
001300000
000130000
00004000
00000400
00000040
00000004
,
304100000
3014160000
2129140000
32250000
00006410
0000101328
000013932
0000741612
,
10000000
01000000
1301600000
100160000
00001000
00000100
000059160
000093016
,
1301500000
160410000
160400000
011600000
000041500
0000161300
0000104016
0000215160

G:=sub<GL(8,GF(17))| [1,0,13,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,15,4,4,16,0,0,0,0,0,0,0,0,1,4,1,15,0,0,0,0,0,16,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16],[13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[3,3,2,3,0,0,0,0,0,0,12,2,0,0,0,0,4,14,9,2,0,0,0,0,10,16,14,5,0,0,0,0,0,0,0,0,6,10,13,7,0,0,0,0,4,13,9,4,0,0,0,0,1,2,3,16,0,0,0,0,0,8,2,12],[1,0,13,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,5,9,0,0,0,0,0,1,9,3,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[13,16,16,0,0,0,0,0,0,0,0,1,0,0,0,0,15,4,4,16,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,16,10,2,0,0,0,0,15,13,4,15,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0] >;

38 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E···4O8A···8P
order122222244444···48···8
size111144411114···44···4

38 irreducible representations

dim111111111111111444
type++++++++++-
imageC1C2C2C2C2C2C2C2C2C4C4C4C4C4C42+ (1+4)2- (1+4)Q8○M4(2)
kernelC42.310C23C4⋊M4(2)C42.6C22C42.6C4C42.7C22C89D4C86D4C84Q8C23.36C23C4⋊D4C22⋊Q8C22.D4C4.4D4C42.C2C422C2C4C4C2
# reps112124221224224114

In GAP, Magma, Sage, TeX

C_4^2._{310}C_2^3
% in TeX

G:=Group("C4^2.310C2^3");
// GroupNames label

G:=SmallGroup(128,1727);
// by ID

G=gap.SmallGroup(128,1727);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,891,675,1018,80,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,a*c=c*a,d*a*d=a^-1,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=b^2*c,e*c*e=a^2*b^2*c,e*d*e=a^2*d>;
// generators/relations

׿
×
𝔽